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S1 Study Design

An integrated data set was generated to study the impact of predicted protein-truncating genetic vari-
ants (PTVs) on the human transcriptome. We combined exome and multi-tissue transcriptome data
from 173 individuals (up to 30 tissues per individual) with genome and lymphoblastoid cell line (LCL)
transcriptome sequencing data from 462 individuals (genotypes for 41 individuals were imputed). We
used mRNA quantifications (gene, splice junction, exon and intron) along with allelic ratio data herein
referred to as allele-specific expression (ASE) data to:

1. study the transcriptional properties of PTV-containing transcripts,
2. gain insights into nonsense-mediated decay (NMD),

3. gain insights into the impact of large structural gene deletions on gene expression and assess
evidence for dosage compensation for heterozygous PTVs, and

4. gain insights into the transcriptional impact of variants proximal to splice junctions.

We focused on nonsense single nucleotide variants (SN'Vs), frameshift indels, splice-disrupting SN'Vs,
and large deletions.

S2 Genotype data

S2.1 Geuvadis data set
S2.1.1 SNVs and indels

We used the genotype data from the Phase 1 release of the 1000 Genomes project (1KG) for 462
individuals (genotypes for 41 individuals were imputed) included in Lappalainen et al. 2013 and
available at http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/genotypes/
(3, 9).

S2.1.2 Large deletions

The large deletion calls for GEUVADIS samples were extracted from the official Phase 1 data release
of the 1000 Genomes project.
All files used to identify the breakpoints, genotypes and validation status of these calls can be
downloaded (as of March 11, 2014) from:
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/working/20120813_
phasel_large_del_submitted_to_DGVA/
Much of the data may also be obtained from the Database of Genomic Variants archive:
http://www.ebi.ac.uk/dgva/

Validation. Three experimental approaches were used by the Structural Variation (SV) subgroup of
the 1000 Genomes project to validate their deletion calls. We summarize the validation methods here,
more complete details can be found in the supplemental material for the Phase 1 paper (9).

* IRS. An [llumina Omni 2.5M genotyping chip was run on all samples. Probe intensity data from
this chip was used to perform in silico validation and estimate false discovery rate of deletion
call. A rank-sum test was used to compute a P value for each deletion call, where a call consists
of a combination of a deletion site (chromosome, start, end) plus a list of samples called as
carriers of the deletion (samples that are either het or homozygous deleted). To evaluate a call,
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the intensities for each probe falling within the deletion site were ranked separately and then
the ranks were re-ranked across all probes within the called deletion site, using random order
to break ties. A Mann-Whitney-Wilcoxon (MWW) test was used to compute a P value for
each call based on the combined rankings. When confidence intervals on the boundaries were
supplied for a deletion call, only probes within the innermost confidence interval were used to
evaluate the call.

* Polymerase chain reaction (PCR). SV callsets were created by multiple groups involved in
the 1000 Genomes project. To enable the calculation of false discovery rates (FDRs) for in-
dependent SV callsets, the SV subgroup randomly picked 96 loci from each deletion callset
for subsequent PCR validation experiments. The randomization was carried out by randomly
picking, without replacement, from the entire list of generated calls for each SV discovery
callset. Duplicate primers between different callsets were removed, yielding 91-96 loci tested
per callset. PCR validation experiments of deletions were designed using a spanning primer
strategy where both primers hybridize to regions flanking the predicted SV. PCRs resulted in
either a band size corresponding to the reference allele, or a shorter amplicon corresponding
to the reference allele band size reduced by the inferred SV size. In addition to the putative
deletion carrier, each PCR was run along with three controls: NA12892 genomic DNA, a pool
of five DNAs, corresponding to four human samples (HG00407 + HG00689 + NA18507 +
NA19314 (Coriell) and a chimpanzee sample EB176 (JC) (HPA Culture Collections).

* Array comparative genomic hybridization (CGH). A custom Agilent 2x1M CGH Microar-
ray was designed against the union of SV calls made in a 25-sample subset. Each SV locus
was genotyped in this set of 25 samples. A locus was considered “validated” if the number
of samples with a validated deletion call was greater than the number of samples in which a
deletion call could not be validated.

There are 22,531 deletions in the Phase 1 release. We considered a deletion to be validated if it
passed at least one of the three validation experiments, and it did not fail PCR or CGH validation.
This selection criteria results in 8,021 validated deletions from samples in the GEUVADIS collection.

The 1KG deletion calls were produced by a large combination of first-generation tools for copy
number variation (CNV) discovery from next-sequencing data. Due to the complexities of merging
call sets, a locus could be considered validated yet have significant breakpoint misestimation or geno-
typing error. To ensure the highest possibly quality of the data, we manually curated 1,425 PTV
deletion events by inspecting the LRR and BAFs from the Omni2.5 data. These represent all events
that passed some basic filters (biallelic, rare, partial or complete PTV) and which had > 4 probes
spanning the deletion region on Omni2.5. This produced a short, conservative list of 145 deletion
calls with extremely high confidence for a total of 59 unique PTV deletions. Importantly for our PTV
analyses, a variant was only considered validated if the original reported breakpoints of the deletion
were consistent with the breakpoints apparent from the array data. Ultimately we restricted our defi-
nition of large deletions to just those that remove the entire coding DNA sequence (CDS) of a gene,
due to technical concerns about the interplay between structural variation and mapping accuracy pro-
ducing a list of 33 large deletions pre manual curation and a list of 25 large deletions post manual
curation.

S2.2 GTEx data set

S2.2.1 Exome sequencing

We performed whole exome sequencing on blood DNA samples from 180 GTEx pilot phase donors
at the Broad Institute’s Genomics Platform, using Agilent Sure-Select Human All Exon v2.0, 44Mb

baited target, and the Broad in-solution hybrid selection process. For input DNA we used > 250 ng
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of DNA, at > 2 ng/ul. Our exome-sequencing pipeline included sample plating, library preparation
(2-plexing of samples per hybridization), hybrid capture, sequencing (76bp paired reads), sample
identification QC check, and data storage. Our hybrid selection libraries cover > 80% of targets at
20x and a mean target coverage > 80x. The exome sequencing data was de-multiplexed and each
samples sequence data were aggregated into a single Picard BAM file.

S2.2.2 SNVs and indels

Exome sequencing data was processed through a pipeline based on Picard from http://picard.
sourceforge.net/, using base quality score recalibration and local realignment at known indels
(these algorithms were originally presented in (28) describing the GATK sofware, but has since been
migrated to Picard). We used the BWA aligner from http://bio-bwa.sourceforge.net for
mapping reads to the human genome build 37 (hgl19) (29). GATKs UnifiedGenotyper package was
then used for SNV calling jointly across all 180 samples (28, 30). GATKs HaplotypeCaller (v2.8)
was used for indel calling across all 180 samples (37). We applied default filters to SNV and indel
calls using GATK’s Variant Quality Score Recalibration (VQSR) approach and generated a VCEF file
(32).

S2.2.3 Large deletions

Large deletion genotyping from Array data All GTEXx pilot samples were run on two Illumina
Human microarray platforms: the Omni 5SM and the Exome array. The Log,R ratios from each
array were quantile normalized to a single reference distribution, and then these transformed values
were merged into a single data set for each sample, what we refer to as the “SuperArray”. Instead of
doing ab initio large deletion discovery and genotyping, we attempted to genotype all known common
deletion loci that contained at least one SuperArray probe, using methods implemented in CNVtools
(33). We targeted 2,593 deletions with frequency greater than 1% in either the CEU or YRI samples
of 1000 Genomes pilot 1, and we were able to genotype 488 sites using the SuperArray. Following
QC we were left with high quality genotypes for 30 common PTV deletions.

Large deletion calling from exome sequencing We used the XHMM software to detect copy num-
ber variation in whole-exome sequencing data from the GTEx project in 180 individuals (34). The
XHMM exome sequencing CNV discovery and genotyping pipeline (34, 35) was run on these sam-
ples to detect exon-level copy number variation and assign CNV quality metrics.

XHMM output files were converted to PLINK format for QC purposes. Stringent call-level QC
was performed by removing all sex chromosome CNV and low-quality XHMM calls (XHMM SQ
< 60).

As detailed in the standard XHMM protocol, coverage was calculated and averaged over each
target using GATK DepthOfCoverage and XHMM. Mean sample coverage ranged between 40x and
80x for most samples (fig. S1a).

Approximately 4000 targets were found to have little or no coverage in most samples (fig. S1b),
and thus removed; otherwise, per-target coverage necessarily averaged at 60x, with a long tail with
some targetes at 200-300x coverage. This is typical of exome-sequencing experiments and thus ne-
cessitates normalization across targets before CN'V can be called (34). Using XHMM, normalization
was performed in a principal component analysis framework, where the 7 largest principal compo-
nents were automatically normalized out (fig. S1c); as is typical, these largest components have a
qualitatively different character than subsequent components and are correlated with combinations of
GC content, and sample and target read depths (fig. S1d), which reflect both genomic properties of
the exons being targeted as well as the varying sample preparations such as batch effects. After nor-
malization, most targets have a relatively low variance among samples, but we removed the remaining
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outlier targets for which a large spread among the sample read depths still existed, possibly indicating
failed normalization.

We excluded all multi-allelic events from analyses and subsequently removed 8 outlier samples
(those with no CNV or greater than > 50 CNYV calls. In the default QC pipeline it is recommended
to remove CNVs larger than SMb. We ultimately decided not to use this filter given the independent
technology (array) available for confirmation).

The resulting set of CN'Vs calls was then distilled into a single CNV map, where we consider two
CNV calls with greater than 50% reciprocal overlap to be alleles of the same locus. This CNV map
consisted of 1413 unique loci, split into 399 sites of deletion, 626 sites of duplication, and 370 sites
where both deletions and duplications were observed.

Validation Common deletions genotyped by the Omni 5SM array were considered validated if they
overlapped a known common large deletion locus reported by either the 1000 Genomes project (9) or
the Structural Variation Consortium (36).

The goal of our rare deletion validation analysis was to create a conservative set of heterozygous
deletion calls that have strong experimental support. XHMM rare deletion calls were validated by
comparison with probe intensity data from the combined Omni 5M and exome arrays that were on all
GTEx samples (the “SuperArray”). The SuperArray contained at least one probe within the predicted
breakpoints of 539 of our 636 XHMM deletion calls. We summarized the copy number of each
putative deletion region as the average probe LogsR ratio within the region. We observed a clear
validation signal when we inspected both the rank (fig. S2a) and the mean LogsR ratio of putative
deletions (fig. S2b). We defined our final, validated deletion callset as deletions with XHMM genotype
quality score greater than 70, SuperArray rank less than 5, and Log,R ratio greater than -3 (the latter
to avoid homozygous deletions). This produced a validation callset of 70 rare deletions. Ultimately
we restricted our definition of large deletions to just those that remove the entire CDS of a gene (as
described in earlier section), due to technical concerns about the interplay between structural variation
and mapping accuracy producing a list of 8 large deletions (after the removal of “2” large deletions
identified to overlap with a 20Mb mosaic event).

S2.3 Variant Annotation
S2.3.1 SNVs and indels

Annotation of SNVs and small indels was performed using a modified version of the Variant Ef-
fect Predictor (VEP v2.5; http://useast.ensembl.org/info/docs/variation/vep/
vep_script.html) tool from Ensembl and Gencode v12 annotation. As shown in a previous
study, the choice of transcripts and software may have a large effect on variant annotation (22) and
we choose the GENCODE v12 gene models to maintain consistency across all the analyzed data
sets. The tool was modified to produce custom annotation tags (table S1). The additional annotation
tags were applied to variants that were annotated as STOP_GAINED, SPLICE_DONOR_VARIANT,
SPLICE_ACCEPTOR_VARIANT, or FRAME SHIFT and flagged if any filters failed. A PTV is pre-
dicted as high confidence (HC) if there is at least one transcript that passes all filters described in
MacArthur et al (2012), (4). Nonsense-mediated decay (NMD) prediction was performed using the
PLINK/SEQ v0.09 toolkit from https://bitbucket.org/statgen/plinkseq/ and de-
scribed in detail in section S7.3.

S2.3.2 Large Deletion Annotation

To maintain consistency with previous work we used the same pipeline described in MacArthur et al.

to annotate large deletions (4). Briefly, this pipeline considers 6 ways in which a deletion can result

in severe disruption of a gene: deletion of first exon, deletion that results in a shift in the reading
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frame, deletion of the full coding DNA sequence (CDS), deletion of a part of the CDS, deletion of
a splice site, and deletion of the start codon. We annotated all validated deletion calls using GEN-
CODE v12 transcripts. A deletion was considered to produce “complete” loss-of-function of a gene
if all transcripts of that gene were annotated with one of the 6 possible PTV classifications. The
precise location of the breakpoints for array and sequencing based deletion calls is often uncertain;
array-based breakpoints typically having uncertainty in the range of several kb, while sequencing
breakpoints may be exact or associated with anywhere from 1bp - 1kb of uncertainty. Our annota-
tion pipeline considers the precision of the breakpoint estimates for each deletion, and uses these to
produce a conservative PTV annotation - if any possible definition of the deletion breakpoints would
exclude/reverse a finding of PTV derived from the estimated breakpoints, then the deletion will not
be annotated as a PTV. Ultimately we restricted our definition of PTV large deletions to just those
that remove the entire CDS of a gene.

S3 RNA sequencing

S3.1 Geuvadis

As described in Lappalainen et al. 2013 and ’t Hoen et al. 2013, (5, 6) LCLs were collected from
Coriell Cell Repositories (GBR, FIN, TSI) or originally from Coriell but grown at the University
of Geneva (CEU, YRI). The live cultures were shipped to ECACC (European Collection of Cell
Cultures) as live cultures. In ECACC, the cell lines were cultured, then split to produce 8 x cell banks
of the samples, and finally shipped to Geneva. RNA was extracted in Geneva and assessed for RNA
quality and quantity.

RNA sequencing of the Epstein-Barr virus (EBV) growth-transformed lymphoblastoid cell lines
(LCLs) was performed in multiple European sequencing facilities on the Illumina HiSeq2000 plat-
form with 75bp paired-end sequencing with fragment size of approximately 280 bp using the Illumina
TruSeq library construction protocol. This is a non-strand specific polyA+ selected library.

Furthermore, as indicated in Lappalainen et al. 2013 (5) each lab submitted one demultiplexed
fastq file. Reads failing Illumina quality filtering were removed. mRNA read mapping was conducted
with the GEM aligner (37).

S3.2 GTEx

RNA sequencing of the tissues collected in the pilot phase of the GTEx project was performed
using the Illumina TruSeq library construction protocol. This is a non-strand specific polyA+ se-
lected library. The sequencing produced 76-bp paired end reads. Further detail on the samples,
read alignment, post-processing, tissue and sample collection is described in the main GTEx analysis
manuscript (8).

We used the quantifications for the nine tissues in GTEx with the highest number of subjects:

1. Adipose Subcutaneous (ADPSBQ, n = 94);
2. Artery Tibial (ARTTBL, n = 112);

3. Heart Left Ventricle (HRTLV, n = 83);

4. Lung (LUNG, n = 119);

5. Muscle Skeletal (MSCLSK, n = 138);

6. Nerve Tibial (NERVET, n = 88);



7. Skin Sun Exposed (SKINS, n = 96);
8. Thyroid (THYROID, n = 105); and

9. Blood (WHLBLD, n = 155).

S4 mRNA quantifications

S4.1 Gene, exon, intron, and splice junction quantifications

From the aligned RNA-seq read data from both GTEx and Geuvadis, we quantified several features of
transcripts based on the GENCODE v12 gene annotation: genes, exons, introns, and splice junctions.
Gene and exon quantifications for the GTEx and the Geuvadis data sets were generated using very
similar methods briefly described in this section.

The data files of these quantifications are available in

e Geuvadis: http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/,
* GTEx: http://www.broadinstitute.org/gtex/datasets.

Briefly, for exon quantifications, overlapping exons in the annotations were merged, and reads
overlapping these regions were counted. Gene quantifications for GTEx were the sum of the exons
per gene converted to RPKM, and in Geuvadis the sum of transcript RPKM quantifications was used.
For intron quantifications, we counted the number of reads that overlap regions that are exclusively
spanned by introns. Splice junctions were quantified by counting the number of reads mapping to
splice-junctions with split-mappings with consecutive read positions mapping to the last (donor) and
first (acceptor) exonic positions in the annotated splice-junctions. Only properly paired reads were
used in the quantifications, and in all but exonic quantifications only reads complying with the anno-
tated exon-intron structure were included in the analysis.

S4.2 Normalization of quantifications

In the analysis of this paper, unless otherwise specified, for normalization of the quantifications we
used the methods in Lappalainen et al. 2013 (5) also for GTEx data, so that we were able to com-
bine GEUVADIS and GTEx data. In general, these methods are very similar to those used in the
main GTEX analysis manuscript (8). The supplementary material of Lappalainen et al. (5) provides
additional details of the quantification and normalization methods used in this project, and they are
briefly summarized below: All read count quantifications were first normalized by sequencing depth
by dividing them by the total number of mapped reads per sample. For exon, intron, and junction
quantifications we scaled them to the median number of mapped reads (85M in GTEx). We then split
the data to tissues and all subsequent analysis was done separately for each of the tissues with > 80
samples.

We filtered elements (genes/exons/junctions etc) to keep only those with > 0 expression > 50%
of the individuals, except for introns where this filtering step was omitted (since we are searching
for rare inclusions of introns). We further removed technical variation using PEER (38) similarly to
Lappalainen et al. (5): we ran PEER for 20,000 quantification units (e.g. exons or genes) with 10
factors (K = 10), adding the mean to the model. Covariates from this analysis were regressed out
from all the quantifications, and the mean was added to the residuals. These quantifications were
further transformed to standard normal distribution for the splice disruption analysis.
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S5 Transcriptional properties of PTV-containing transcripts

Each human carries at least 100 PTVs even after careful filtering for sequencing and annotation errors,
but the majority of these variants in an individual appear to be common in the population and reside
in genes that are likely tolerant to dramatic disruption (4). One putative mechanism underlying such
tolerance is that PTVs often do not affect all transcripts of a gene (4), and tissue-specific expression
of the different transcripts may potentially affect the penetrance of the PTV. We studied the overall
gene expression properties of PTV containing genes and the expression of splice junctions containing
splice disrupting variants.

S5.1 Expression properties

We identified PTVs in the 462 individuals in the Lappalainen et al. data set (5) and the 180 exome
sequencing data set in the GTEx project. We partitioned the PTVs into categories by minor allele
frequency (MAF): a) common (MAF > .05; 1,607 genes), b) low frequency (.01 < MAF < .05; 864
genes), and c) rare (MAF < .01; 5,096 genes). We compared these sets to the set of protein-coding
genes (13,372 genes) where no PTVs were observed (fig. S3-7).

Comparison of tissue-wide gene expression profile for PTV containing groups of genes We
compared the distribution of median gene expression values for PTV containing genes across tissues
using the MWW one-sided (wilcox.test inR, alternative="1ess") test (fig. S4).

Comparative analysis of ubiquitous expression We used the same grouping of genes to assess
how the different groups of genes are expressed across all tissues. We compared the proportion of
genes with median gene expression value above a log(RPKM) cutoff for “rare”, “low frequency”,
“common”, and “no PTV” protein-coding genes (fig. S5).

Comparative analysis of tissue-specific expression Then, we studied the tissue-specific expres-
sion properties. We transformed the median expression values for gene ¢ and tissue j as follows: Let
A be an expression matrix with I protein-coding genes (rows) and J tissues (columns) with values
in RPKM. Let B be the matrix of tissue specificities for protein-coding gene ¢ and tissue j with the
transformation

A
Bij = - ;
A
where || A;|| is the £ norm of the gene expression vector for protein-coding gene 1.
We compared the proportion of protein-coding genes above a tissue-specificity measure cutoff for

29 ¢

“rare”, “low frequency”, “common”, and “no PTV” protein-coding genes (fig. S6).

(Eq. 1)

S5.2 Splice junction usage comparison

We compared the usage of splice-junctions - where we identify splice-disrupting variants - by analyz-
ing splice-junction measurements of individuals with homozygote reference genotypes.

We used the number of reads spanning (normalized by the number of reads per sample) the splice
junction and divided by the gene RPKM to get a relative splice junction abundance measure (Relative
SJ Abundance, fig. S7). Variation in the Human Gene Mutation Database (HGMD) version hgmd-
2012.4 was used in the analysis (2).
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S6 Allele-specific analysis

S6.1 Allele-specific analysis of SNVs

Allele-specific expression analysis was based on allelic counts in the RNA-seq reads of heterozygous
sites genotyped from DNA, within each individual. In this analysis of GTEx data, we included only
heterozygous genotypes with genotype quality > 60 (Phred-scale) for SNVs and > 95 for indels. For
the Geuvadis data set the maximum genotype quality in the VCF is 50 - we used this as the genotype
quality threshold.

Additionally, we excluded sites that are susceptible to allelic mapping bias: 1) sites with 50bp
mappability < 1 based on the UCSC mapability track, implying that the 50bp flanking region of the
site is non-unique in the genome, and 2) simulated RNA-seq reads overlapping the site show > 5%
difference in the mapping of reads that carry the reference or alternate allele (39). We only used
uniquely mapping reads (mapping quality > 150), NM > 6, and sites with base quality > 10. We
included sites in the analyses with at least 8 reads in the heterozygote individual.

S6.2 Allele-specific analysis of indels
S6.2.1 Background

Frameshift insertions and deletions (indels) are believed to be an important source of loss-of-function
variation, and are known to contribute to several disease associations (4, 40). However, proper char-
acterization of these variants has been difficult. The first problem is that calling small indels from
genome and exome sequencing data has been challenging, with even the best algorithms having high
error rates especially for low frequency variants (/2).

Furthermore, while transcriptome effects and NMD caused by indels can in principle be analyzed
by ASE in heterozygote individuals, this has not been done before due to difficulty in obtaining
reliable RNA-seq read counts of the reference and alternate alleles. This is due to two challenges:

1. If RNA-seq reads are aligned to the reference genome, any read carrying alternative indel alleles
will have several mismatches, and often fail to map in the correct location. This leads to a higher
allelic mapping bias than in SNVs (39);

2. Even in cases when the reads map to the correct locus of the reference genome, there are often
small errors in the local alignment, with mappers often failing to decipher the exact location
and type of the alternative allele.

One possible solution to the problem is realignment of the RNA-seq data to full personalized
genomes. However, in large data sets such as GTEx and GEUVADIS, the creation of 1270 maternal
and paternal reference genomes, the alignment itself, and further analysis and storage of terabytes of
BAM files would have been computationally very demanding. This is further complicated by the fact
that indels alter the genomic coordinates.

S6.2.2 Local personalized mapping for ASE analysis

Thus, we developed a new approach to address the challenges in indel ASE analysis in a computation-
ally feasible manner. In addition to the outline of the approach here, the scripts and documentation
of detailed parameters are available in http://tllab.org/data-software/. Our method is
based on alignment to local reference sequences that have been modified to contain both the reference
and alternative alleles. The workflow is shown in fig. S8.

Briefly, for each variant we extract the flanking (& 100bp) reference genomic sequence, and mod-
ify it to build an alternative allele reference index. For the analysis of this study, we chose to use
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only the GTEx data with GATK HaplotypeCaller genotype calls from exome sequencing data. Our
analysis showed that while the GATK UnifiedGenotyper produced good-quality genotypes for SNV's
that were used for the other analyses of this paper, for indels the highest concordance with RNA-seq
data was obtained with GATK HaplotypeCaller (fig. S9). We performed ASE analysis using the local
modified reference mapping for the following categories of autosomal variants:

1. 500 randomly selected synonymous SNV's from exome sequence data as a control for SNVs;
2. 1845 nonsense predicted protein-truncating SNVs from exome sequence data;

3. 1540 inframe indels (<6bp) from exome sequence data as a control for indels;

4. 1628 frameshift predicted protein-truncating indels (<6bp) from exome sequence data; and

5. 130 frameshift predicted protein-truncating indels from exome-chip data to confirm that the
results are not biased by genotype calling from exome sequence data.

We mapped all RNA-seq reads from 1634 samples from 173 subjects separately against the two
reference indices, one with the reference and one with the alternative alleles of all the variants. The
mapping was done with BWA, mapping the reads as single-end. These BAM files were then processed
jointly to count the reference and alternative allele reads in each locus, based on reads that map
perfectly to only one of the two reference indices. This, as well as the latter filtering step (see below)
makes this method conservative. This is sufficient for our analysis of genome-wide phenomena, but
for a well-powered analysis of any site of interest will require further methods development.

An important caveat of this method is that as the alignment is not done against the entire genome,
some reads that originate from another locus may incorrectly appear as uniquely mapping to the
analyzed loci. To avoid this, we further filtered the results to remove variants where the flanking
36bp region is not unique in the genome, as indicated by the mapability track of the UCSC Genome
Browser.

S6.2.3 Results

Having allele counts for each sample, we further filtered the data to only have sites with > 8 reads. To
evaluate the performance of this method, we compared the allele ratios obtained with this approach
to those from the standard ASE analysis for the 210 SNVs with > 8 reads in both analyses. The
correlation of the ratios is high (Pearson correlation = 0.80, P < 2.2 x 107'%), and the lack of
bias towards either direction suggests that the deviations are driven by random loss of some reads in
localized mapping (fig. S10). This renders strong support for the accuracy of alignment both in this
and in the traditional ASE approach.

Next, we investigated concordance of genotype calls and RNA-sequencing data, knowing that
indel genotyping can have a higher error rate. The allele ratios for all REF/REF, REF/ALT, and
ALT/ALT genotypes are shown in fig. S11. As expected (and observed before (5)), some heterozy-
gous genotypes are monoallelic, making it difficult to distinguish in individual cases whether this is
driven by true ASE, e.g. by NMD, or genotyping error with homozygous genotypes appearing as
heterozygous. This is a much bigger problem for indels, especially deletions, and thus in all the ASE
analysis of indels, in order to validate the heterozygous genotype, we use only sites with median al-
lelic ratio across all the tissues < .95 and > .05. Altogether, these filters leave us with ASE data from
62,846 genotypes in 1929 variants.

To analyze the overall variant signal of ASE and NMD from these data, we first sampled one
heterozygous individual from each variant in order to give equal weight to rare and common variants,
and repeated the sampling 500 times. The results show a clear deviation towards the loss of the
alternate allele in frameshift indels and nonsense SNVs compared to control set of indel and SNV
(fig. S12).
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S6.3 Quantifying RNA allelic ratios by microfluidic multiplex PCR sequenc-
ing (mmPCR-seq)

S6.3.1 mmPCR-seq validation

We used mmPCR-seq (/7) as an orthogonal technology to compare allelic ratios measured by RNA-
seq at some PTV sites as well as control sites. This validation experiment included sites for this study
as well as for two others studies. For this study, we selected 945 exonic sites from 9 individuals
with large numbers of tissues (121; 8-13 per individual) and large quantity of RNA. We successfully
designed multiplex primers for 682 of the 945 sites (table S3). For convenience, details about the
methods for the mmPCR-seq validation are reproduced in the subsections S6.3.2 mmPCR primer
design, S6.3.3 cDNA library construction and mmPCR preamplification, S6.3.4 Fluidigm mmPCR
and barcoding, and S6.3.5 next-generation sequencing.

S6.3.2 mmPCR primer design

Primers were designed with the yamPCR program (417), which excises a template sequence, designs
candidate primers on this sequence with a modified version of Primer3, uses BLAST to search for
matches of candidate primers, and assembles a multiplex primer pool while ensuring that primers in
the pool do not interact with each other or generate multiple amplicons. We used a version of this
program adapted to design primers based on transcript cDNA sequences (/7). This version finds a
transcript that includes the site of interest based on provided gene annotations and uses the cDNA
sequence around the site as the template for primer design. It uses a BLAST database with one
representative transcript per gene with all the gene’s exons. We modified the program to ensure that
the sites were at least 2 bp from the 3’ end of either primer and at most 70 bp from the 5’ end of one
of the primers. Furthermore, to prevent primer design over variant sites, we masked any site that was
polymorphic in at least one of the nine individuals based on genotypes from exome sequencing data.
Most primers were designed to have amplicons between 150 and 400 bp long, but we allowed longer
amplicons for about 10% of sites which otherwise did not have primers designed for them. In total,
48 pools of up to 20 primer pairs were designed. A Perl implementation of the program is available
athttp://montgomerylab.stanford.edu/resources.html.

S6.3.3 cDNA library construction and mmPCR preamplification

121 GTEx samples were sent to Stanford under MTA #1C2013-1482. Five hundred nanograms of
total RNA from subject-derived tissue (GTEx Consortium, The Broad Institute) were converted to
cDNA using iScript reverse transcriptase (BioRad). Each cDNA library (150 ng) was preamplified
using a primer pool (50 uM each) covering 818 individual sites (the 682 sites for this project and 135
additional sites not relevant to this study) with KAPA 2G (5x), Fast PCR Kit (KAPA Biosystems), and
the following amplification protocol: 95C 10 min; (95°C 15 sec; 60°C 4 min) x 2; (95°C 15 sec; 72°C
4 min) x 13. Pre-amplified libraries were magnetic-bead purified (Agencourt AMPure XP) and the
resulting library concentrations were spot-checked by NanoDrop before proceeding to the Fluidigm
mmPCR step.

S6.3.4 Fluidigm mmPCR and barcoding

A maximum of 20-plex primers (50 uM each) were combined to form 48 different primer pools. The

cDNA libraries (3.75 ul) for the 121 samples and 12 technical replicates, 8 inter-array and 4 intra-

array, were combined with KAPA2G (5x) mix and Fluidigm 20x Access Array Loading Reagent.

Three Fluidigm Access Arrays were primed, mixed, amplified, and harvested as described in Zhang

etal. (/7). Each Fluidigm Access Array held up to 48 samples. Harvested samples were prepared for

sequencing with adapters containing individual barcodes by PCR amplification using KAPA2G (2x)
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mix and the following amplification protocol: 95°C 5 min; (95°C 30 sec; 55°C 30 sec; 72°C 1 min)
x3; (95°C 30 sec; 72°C 1 min) x10; 72°C 5 min; 12°C end. One-tenth of the volume of each library
was checked for integrity on a 1.5% agarose gel. Three microliters of each amplified library were
pooled and column purified of excess adapters (QIAquick PCR Purification Kit, Qiagen).

S6.3.5 Next-generation sequencing

Pooled mmPCR c¢DNA libraries from each Fluidigm Access Array were checked by Qubit (Life
Technologies) for concentration, by Agilent Bioanalyzer for average size, and adjusted to 12 pM. The
three pooled libraries were sequenced separately on the MiSeq desktop sequencer using 150 cycle V3
cartridges (Illumina) yielding 75 bp paired-end reads.

S6.3.6 mmPCR-seq data analysis

De-multiplexed reads were trimmed of adapters using cutadapt 1.4.1 (42). All reads shorter than 20 bp
after trimming were removed. The reads were then mapped to the human reference (GRCH37) using
STAR 2.3.0 (43) (—outFilterScoreMinOverLread 0 —outFilterMatchNminOverLread 0) and TopHat
1.4.1 (44) (—mate-inner-dist 300 —mate-std-dev 500). Counts of reference and alterative alleles over
assayed sites were parsed from the output of samtools mpileup over the sites.

Comparison of aligners STAR mapped more reads than TopHat to the sites targeted by mmPCR-
seq (fig. S13). The correlation of alternate allelic ratios for TopHat and STAR was highly comparable
(figs. S14 and S15). Before quality control filtering, the Pearson correlation is 0.89 (P < 2.2 x 10716),
After quality control filtering (total depth count > 150, ref allele count > 5, and non-ref allele count
> 5), the Pearson correlation is 0.95 (P < 2.2 x 107!%). Except for one variant that was excluded
from downstream analysis (rs1138349), there is high correlation between TopHat and Star alignments.
Therefore, with the exception of some direct comparisons to RNA-seq in the next section, all analyses
using the mmPCR-seq data were performed using the STAR alignments.

Comparison of alternate allele ratios measured by RNA-seq and by mmPCR-seq The RNA-
seq data were aligned with TopHat, so we used the mmPCR-seq TopHat alignments to control for
mapping differences when comparing the alternate allele ratios. We compared heterozygous sites
with at least 30 RNA-seq reads and that passed mmPCR-seq quality control filters described above.
There was moderate correlation (Pearson correlation 0.52, P = 4.4 x 10~1°) between the allelic ratios
measured by these two technologies, but there were some sites for which the estimates of these ratios
differed substantially (fig. S16). In addition, there was high correlation for nonsense SNVs (Pearson
correlation 0.79, P = 7.3 x 10~!%) between the allelic ratios measured by these two technologies.

We also compared the alternate allele ratio for heterozygous INDEL sites for which we have
both mmPCR-seq and RNA-seq data and find significant correlation (Pearson correlation 0.51, P
= 4.4 x 1072, fig. S16¢).

Comparison of technical replicates We compared the alternate allele ratios for heterozygous SNV
sites of the 8 inter-array and 4 intra-array replicates. All samples with more than ten sites passing
the quality control filtering described above had Pearson correlations that ranged from 0.44 to 0.89,
and the Pearson correlation across all replicates was 0.69 (P = 2.2 x 10~16 Fisher and Gayen test,
fig. S17). Two of the inter-array samples had only 5 and 7 heterozygous sites with at least 150
reads, respectively, due to low sequencing depth in one of the replicates and were excluded from
the comparison. There was otherwise no noticeable difference between inter-array and intra-array
replicates. Technical replicates for nonsense variants had moderate correlation (Pearson correlation
0.54, P = 8.7 x 10713, fig. S18).
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Analysis of PTVs The allelic expression of the PTV SNVs was compared to the control sites. The
mmPCR-seq data was filtered for quality control purposes using the depth filters described above.
The alternate allele ratio was calculated by dividing the number of alternate allele reads by the sum
of the reference and alternate allele reads. We observed that high-confidence PTVs have significantly
decreased allelic expression of the deleterious allele compared to non-PTV sites (P < 2.2 x 10716,
one-sided t-test).

S7 Insights into nonsense-mediated decay (NMD)

S7.1 Classifying allelic expression patterns

Description of statistical methodology We applied the statistical methods described in Pirinen et
al. 2014 (15) to all nonsense variants with ASE data (minimum read depth = 8) in the Geuvadis and
the GTEx data sets (fig. S19-S26). In GTEXx data, this method jointly analyzes ASE data of a given
variant across all the tissues per individual. The method takes into account heterogeneity in the data:
firstly, individuals often have RNA-sequencing data from varying number of tissues, sometimes from
additional tissues than the 9 tissues with the largest sample size; additionally, a given gene is not
necessarily expressed in all tissues from which the individual has RNA-seq data; secondly, the total
number of RNA-seq reads is variable, with higher uncertainty for sites with low read counts. In a
Bayesian modeling framework the uncertainty is propagated throughout the applications of the model
to the data. While uncertainty is higher for sites with low read counts, 8 reads carry information and
a higher threshold would lead to loss of valuable data (table S4).

Our main motivation are phenomena such as nonsense-mediated decay that are expected to lead
to noticeable ASE where one of the alleles may be lowly expressed. Hence, our goal is to classify
observed allelic read counts at each site and tissue into one of the following three groups: i) no ASE
(group N') where both alleles are (almost) equally expressed, ii) strong ASE (group S) where one
of the alleles is expressed very little (if at all), and (iii) moderate ASE (group M) that represents
everything in between the first two groups.

In addition, the statistical models allows all variants and all tissues to be studied simultaneously
and allows us to address four main questions:

1. Does the variant show patterns of ASE?
2. Which tissues (when multiple tissues are available) show similar ASE effects?
3. What proportion of variants show ASE in all tissues, only in some tissues, or in no tissues?

4. What proportion of variants show very strong ASE effects across all tissues, which are indica-
tive of complete transcript degradation?

We use the following one-sided priors for each of the three groups:

O(N') ~ Beta(2000, 2000)
6(M) ~ Beta(36, 12)
0(S) ~ Beta(80, 1)

Under the no ASE model N both alleles are expressed (almost) equally and hence 0(N) ~ 0.5. The
N group model allows small deviations from the exact point value of 0.5 to be robust against technical
measurement and mapping bias. Under the moderate ASE model the prior specification dominates
at alternate allelic ratios between 0.10 and 0.46. Under the strong ASE model the prior specification
dominates at alternate allelic ratio less than 0.1.
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In this manuscript, when we apply the model to the GTEx data, we focus on the Hierarchical
Grouped Tissue model (GTM*) that allows many variants and tissues to be analyzed simultaneously.
On the other hand, when we apply it to single tissue data (Geuvadis), we estimate grouped probabili-
ties with the gt m implementation.

In settings where many variants are available for joint analysis the Hierarchical Grouped Tissue
model (GTM*) learns from the data the proportion of variants belonging to each of the following five
states: 1) NOASE state representing no ASE effects across all tissues analyzed, 2) MODASE state
representing moderate ASE effects across all tissues analyzed, 3) SNGASE state representing strong
ASE effects across all tissues analyzed, 4) HETO state representing a mixture of no ASE effects and
either moderate and/or strong ASE effects, and 5) HET1 state representing a mixture of moderate and
strong ASE effects. The TIS_SPE state shown in the figures represents a sub state of the heterogeneity
states. As indicated in Pirinen et al. 2014 (/5) the default prior specification for the proportions is
a dirichlet distribution with hyperparameter vector 1 implying that we are not favoring a priori any
possible state over the others.

For each individual+tissue pair we estimate the posterior probability that the variant belongs to
the no ASE group (N\'), moderate ASE group (M), and the strong ASE group (S). When we analyze
the variants simultaneously, for each variant, we compute the posterior probability that the variant be-
longs to one of the five states: (N=NOASE, M=MODASE, S=SNGASE, HO=HETO and H1=HET1),
where HETO is the heterogeneous state with at least one tissue showing no ASE, and HET1 is the
heterogeneous state with all tissues showing some ASE (some moderate, some strong). In addition,
using the Hierarchical model (GTM*) we obtain estimates of the proportion of variants in each of the
five states. We run the ASE models with nburn=30 and niter=100. We report 95% confidence
intervals obtained by calculating the 2.5 percentile and 97.5 percentile of the estimated proportions
after the 100 iterations.

The method is implemented in the software MAMBA, which is available for download at http:
//well.ox.ac.uk/~rivas/mamba/.

Analysis of RNA-seq data To analyze NMD, we analyzed allelic counts of the following categories
of variants:

e SNVs:

1. synonymous variants (silent);
2. nonsense variants predicted to escape NMD;

3. nonsense variants predicted to trigger NMD,
* indels:

1. in-frame indels;
2. frameshift indel variants predicted to escape NMD;
3. frameshift indel variants predicted to trigger NMD.

In the analysis of GTEx data to estimate sharing of ASE across tissues, we analyzed rare variants
with minimum number of tissues equal to 2. We used options two.sided=FALSE (given our
interest in transcript degradation due to premature stop codon) and indep=FALSE.

In Figure 2E we claim that the heterogeneous ASE effects observed for the nonsense variant
1s149244943 in gene PHKB is not driven by a common tissue-specific eQTL. To perform this anal-
ysis we checked whether the gene PHKB had a single-tissue eQTL as defined in the GTEx main
manuscript, and, if so, verified whether the individual in question was homozygous for the top eQTL
variant, since cis-regulatory variants can drive ASE only in heterozygous individuals. For this partic-
ular example we did not observe any eQTLs for this gene in the GTEx data set.
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S7.2 Allelic expression comparison: common versus rare variants

To compare the allelic expression patterns for common (MAF> .05) and rare (MAF < .01) variants
we used estimates of the proportion of variants reported using the ASE module (fig. S19).

We combined the estimates from the multi-tissue model in GTEx as MODASE (moderate ef-
fects across all tissues), SNGASE (strong ASE across all tissues), HETO (mixture of NOASE and/or
MODASE, SNGASE) and HET1 (mixture of MODASE and SNGASE) to compare the two cate-
gories of variants (common and rare). 95% confidence intervals were obtained from the hierarchical
model applied to the data. For Geuvadis, a 95% confidence interval was obtained for the proportion
estimates using the normal approximation interval.

We computed a two-sided P value for a two-proportion z-test pooled for Hy : p; = p, where p; is
proportion of common variants showing no ASE and p, is the corresponding proportion of common
variants using the prop . test function with default parameters (45-47).

S7.3 Modeling NMD

The rule for termination-codon position proposed by Nagy and Maquat is: only those termination
codons located more than 50-55 nucleotides upstream of the 3’-most exon-exon junction (measured
after splicing) mediates a reduction in mRNA abundance (16).

We used the GTEx ASE outcome as a training data set with binary ASE classification of no ASE
(escape; posterior probability > .8) or some form of ASE (trigger; MODASE, SNGASE, HETO,
HET1, with sum of the posterior probability > .8) for all nonsense SN'Vs. We partitioned the data set
into a training and a test set using 80% of the data to train the model and 20% to test.

We used the GEUVADIS ASE outcome as an independent test data set with binary ASE classifi-
cation of no ASE (escape; posterior probability > .8) or moderate/strong ASE (trigger; with sum of
the posterior probabilitiy > .8).

We generated a list of 38 sequence and genomic features (table S5) including some used in the
development of the CADD approach described in Kircher et al. 2014 (48). We fit a model with the
38 predictors. We applied a random forest algorithm using the caret package (49). To predict the
outcome of the independent test data set (Geuvadis) we used the predict.train function (from
the caret package) using the option type = "prob" to compute class probabilities. ROC curve
was generated using the pROC package (50) (fig. S21). Importance of features was calculated using
the randomForest package, which calculated the mean decrease in accuracy and mean decrease in
Gini. These statistics were used to rank the 38 features (fig. S22). One of the top ranked features was
the distance to the donor site supporting the hypothesis that pre-mRNA splicing is linked to NMD
in humans (57). Furthermore, the number of downstream exons was ranked above the 50bp rule
indicating that the absolute number is an important factor.

S8 Dosage compensation for heterozygous PTVs

Large structural deletions that partially or completely remove genes are confidently expected to cause
complete loss of function of the affected genes. Thus, such deletions in addition to nonsense PTV's
with strong ASE provide an opportunity to examine the possibility that heterozygous carriers of loss-
of-function variants might exhibit compensatory up-regulation of the functional allele, which could
contribute to tolerance of PTVs and partially explain the widespread haplosufficiency of human genes
(18, 52). In model organisms there are conflicting lines of evidence: some model organism studies
appear to indicate clear support for dosage compensation (/9, 20) while others appear to indicate that
dosage compensation is likely to be unusual (53).

A key challenge in the detection of compensation is genotyping error, which is known to be
enriched in deletion calls from sequencing data and is expected to produce a signal identical to dosage
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compensation because the “heterozygous” individual actually has two functional copies. To minimize
the impact of genotyping error on our analyses we focus only on biallelic whole-gene deletion variants
with strong experimental support and manual curation.

S8.1 Common large deletions

We first analyzed the few examples of common whole-gene deletion polymorphisms, some of which
have been examined in LCLs (54). We obtained reliable genotypes for a common deletion of the gene
UGT2B17 in the GTEx donors, and deletions of the genes DDT, GSTT2, FAM106A, LGALS9C and
OR2T10 in the GEUVADIS samples (table S6).

S8.2 Rare large deletions

We examined the evidence for signal of dosage compensation in rare deletions in the GTEx and Geu-
vadis data, analyzing whether the expression levels of heterozygous deletion carriers tend to be half
those of the population average. While the raw data show a strong signal of dosage compensation, this
signal is largely ablated by LOF annotation filtering and stringent manual curation of CN'V genotypes,
suggesting a very strong impact of genotyping and annotation error (figs. S27 and S28).

S8.3 Impact of somatic variation

In the DNA data of one GTEx individual we identified a large (20Mb) mosaic deletion. However,
careful analysis of the multi-tissue RNA-seq data revealed that the deletion was found only in the
individuals blood (where DNA was extracted from), and in other tissues the normal expression of
genes spanned by this variant was apparently not due to compensation but by the cells not carrying
the somatic deletion (fig. S29).

S8.4 Rare nonsense PTVs with strong ASE

We analyzed whether the gene expression value of rare nonsense PTV carriers with strong ASE signal
showed evidence of gene dosage compensation. In the Geuvadis data set we examined a total of 116
nonsense PTVs (n = 35 after requiring at least one alternate read observed, fig. S30). In the GTEx
data set we examined a total of 25 nonsense PTVs (n = 18 after requiring at least one alternate read
observed, fig. S31). A total of 53 nonsense PTVs with strong evidence of no genotyping error were
used in the final analysis presented in the manuscript.

S9 Insights into impact of variants proximal to splice junction

S9.1 Rare variant analysis
S9.1.1 Statistical Methods: Splice Disruption Model (SDM)

To estimate the impact of rare variants proximal to splice junctions we developed a statistical method
we refer to as the Splice Disruption Model (SDM). In this manuscript we focus on variants in a 50bp
window of the donor and the acceptor sites of protein-coding transcripts in the Gencode transcript
models. We are interested in the shift of the distribution of splice junction quantification value for
carriers of the alternate allele for genetic variants proximal to a splice-junction compared to non-
carriers, as a function of distance from splice junction. Using the population values of reads spanning
annotated splice junctions and the standardized trait value of the PTV carriers, we estimate, at each
distance, the proportion of carriers belonging to
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1. the no splice disruption group (0) described by the standard normal distribution, or

2. the splice disruption group (1) with alternative shift in mean p.

Details: Let us consider all individuals who carry a PTV at a fixed base-pair distance from an
acceptor (donor) site of any protein-coding gene. (We do separate analyses for each distance between
-25bp and 25bp.) Let y; be the standardized splice junction quantification value of the PTV carrier k
with respect to the population values at the given distance from the acceptor (donor) site. Our SDM
is the following mixture model:

7 ~ Beta(1,1)
Ye|m ~ Ber(m)
po =10
i~ N (=1,1)
op =1
ol ~1G(1,1)
Ul es o5 1 ~ N (Y ooy, 02,) - (Eq. 2)

Motivation of parameters and distribution: The group membership of each of the PTV carriers
is unknown in advance. As a result the proportion 7 of the PTVs belonging to the splice disruption
group (characterized by an unknown shift in mean z; and variance 0?) needs to be estimated like the
bias of a coin that is estimated from repeated coin tosses. Our prior for 7 is a uniform distribution on
the interval (0, 1) (also known as Beta(1, 1) distribution) implying that we are not favoring a priori
any possible value of 7 over the others.

The trait values have been standardized jointly and we model the trait values of the PTV car-
riers as either drawn from the general population distribution, i.e. the standard normal distribution
N (po = 0,02 = 1), or from a PTV specific normal distribution with unknown shift in mean y; and
unknown variance 0. We model the mean y; by a normal distribution with mean —1 and variance
1 to reflect our interest in those variants that decrease splicing efficiency. In principle, we could also
have used another component to reflect variants with a putative increase in splicing efficiency. How-
ever, that is beyond the scope of this study. The prior for the variance parameter o7 is the inverse
gamma distribution with parameters & = 1 and 8 = 1. This distribution is relatively flat between 0.3
and 1, and thus covers well the region where we expect the variance parameter to reside because the
observations have been standardized and altogether have variance of 1.

MCMC algorithm: We use a Gibbs sampler, an approximation algorithm, to analyze the SDM
with superscripts for the variables denoting their value after the corresponding iteration.

1. Initialize 7©, ;A% (62)), and 4\ for all k.
2. Repeatfort =1,2,... Npun + Niter

(a) Fork=1,2,..., npry, generate y,it) ~ Ber (p?) where

~ -1 -1
o TN (ykhug ! (o) )>
e = (t-1) (t—1) (1) (52)¢=D) Fa-3
(1—m N (0,1) +7 N(iyk;lh , (07) )
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(b) Generate () ~ Beta (1 +> 7;(:), L+npry — D, 71(:)> :
(c) Update:

R )
(02D ~1G | 1+ —E’“;’“ Aty > Y (yk —~ uﬁH)) )
k

-1 |, 2k ey

+ t -1
OIS DR G WD Y 7
= D R (02)“)
Tt (02)“’ 1
1

We run the algorithm for 7y, + niyer = 2000 iterations and discard the first ny,, = 1000 iterations
from the analysis. We show a typical example of a plot used to evaluate the performance of the
algorithm across all the iterations in fig. S32, which were generated for all distances with significant
alternatives. We applied the algorithm to the Geuvadis (Fig. 3) and the nine main tissues in the GTEx
data set (fig. S33-S37).

Evaluating P value: To assess the evidence for the existence of a second component we compute a
statistic

1 Nburn +Niter

>0 w O] (Eq. 4

t=npurm+1

T =

Niter

A standardized statistic is computed

, i} 1 Tpurn +MNiter ® ) . 2
=1 — > (1) (Eq. 5)

n.
tter t=npum+1

to calculate an empirical P value.

We can calculate an empirical P value by calculating null distribution (7}),—;,.._,, where for each
permutation ¢, we sample for each splice junction s, where an individual with a PTV is identified,
one individual without a PTV, and apply SDM model to the standardized trait values of these sampled
individuals. Then, an empirical P value is given by

S I (T, >T) +1
p= Zin | )1 (Eq. 6)
m—+1

S9.1.2 Consequences of splice disruption

In addition to the difficulty in predicting whether splicing changes occur in general, also the type of
change - such as exon skipping or elongation - is usually unknown from genetic data alone. Splicing
changes always lead to major changes in protein structure either via in-frame changes in exon structure
or by introducing a premature stop codon. Our data set provides a valuable opportunity to assess the
downstream consequences of variants that disrupt splicing.

To quantify consequences of splice disrupting variants (posterior probability > 0.5 supporting the
alternative distribution for sites with P < .05 from SDM explained above), we classify the variants
into four classes based on the expression values of their proximal introns and exons in the carriers
of these variants. As with SDM above, we conduct this analysis separately for each distance within
50bp window around acceptor and donor sites.

Let y, = (exy, iny) be the pair of standardized expression levels of the proximal exon and intron

of the variant carrier £ with respect to the population distribution of these quantities. We apply a
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Gaussian mixture model that classifies the bivariate expression level values into four groups whose
means have prior distributions

o = (0,0)7 (unknown/null)
(—0.5,0)7, 1) (exon skipping)
piy ~ N(my = (0,0.5), 1) (exon elongation)

251 NN(ml

3 ~ N (m3 = (—0.5,0.5)", I,) (low exon, high intron; mixture),

where [, is the two-dimensional identity matrix.
We fix the variance structure of each cluster by setting >y = I and X1 = Yo = X3 = 0.5 [5.
With this notation, the model is

7 ~ Dirichlet(1,1,1,1)
V|7 ~ Multinomial (1, 7)
Ui |y 11 20~ N (Y foys Dy, ) - (Eq. 7)

Motivation of parameters and distribution: = The group membership of each of the PTV carriers
is unknown in advance. As a result the membership between the four groups (group 0: unknown/null,
group 1: exon skipping, group 2: exon elongation, and group 3: mixture of exon skipping and exon
elongation) needs to be estimated. The likelihood function for the group membership is multinomial.
The prior for the proportion vector 7 of each group is a Dirichlet distribution with equal parameters
a = (1,1,1, 1) implying that we are not favoring a priori any possible value of m over the others.

The bivariate alternative shifts in mean p; (for exon quantification values) and py (for intron
quantification values) are unknown in advance for the PTV carriers. The trait values have been stan-
dardized and we model the trait values of the PTV carriers as either drawn from the general population
distribution, i.e. N/ (mo = (0,0)%, [2) or from a PTV specific normal distribution with unknown shift
in mean (y41, ft2, or p3) and unknown variance matrix (2Jq, X, Or 23).

We model the exon quantification values of exong skipping group 1 by a normal distribution
centered at -0.5 to reflect variants that after splice disruption skip an exon. Analogously, we model
the intron quantification values of exong elongation group 2 by a normal distribution centered at 0.5
to reflect variants that after splice disruption elongate an exon. Because these measurements probably
do not fully capture the downstream consequences of splice disruption (for instance, some transcripts
may have been degraded by NMD) we chose prior distributions that concentrate more mass closer to
0 than in the SDM above to reflect that we believe these values would not be as extreme as the splice
junction quantification values that may capture more direct consequences of splice disruption. As
indicated in the description of the mixture model, we have fixed the variance structure for each cluster
so that we can impose a clear separation between the trait values of the PTV carriers belonging in one
of the three alternative groups and the null group.

MCMC algorithm: We use a Gibbs sampler to analyse the model and, in particular, to estimate the
proportions 7 shown in the main manuscript.
Superscripts for the variables denote their value after the corresponding iteration.

1. Initialize 7, 4©, and 7 for all k.
2. Repeatfort =1,2,... Ny + Niter

(a) For k=1,2,..., npry, generate fy,(:) ~ Multinomial (1, p,(f)> where

p,(fg) o TN (yp; pl,5,) , for g =0,1,2,3.
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(b) Generate 7" ~ Dirichlet (1 + ng, 1 +ny, 1 + na, 1+ n3) , wheren, = >, I (7,(:) = g) ,
forg =0,1,2,3.
(c) Update forg =1,2,3,:

g

o 1
= D Uk (Eq. 8)

g
k:'y,(f):g

pl ~ N <(n92g_1 + 1) (my + 1% 17,) s (ngS,t + ]2)71> , where

We run the algorithm for nyyy, + njer = 1010 iterations and discard the first ny,, = 10 iterations from
the analysis.

S9.2 Common variant analysis - psiQTLs

To further understand the extent in which alternative splicing is affected by genetic variation, we
searched significant associations between common genetic variants (MAF > 5%) and exon inclusion
(PSI or percentage spliced in) levels in GTEx data (fig. S38-S40, table S7). We calculated the PSI
values for 173,483 internal exons from the Gencode v12 annotation. Details are provided in the
main GTEx analysis manuscript (8). Only exons where the sum of inclusion and exclusion reads is
larger or equal to 10 were considered. For each individual we calculated a multi-tissue PSI value by
averaging the exons where data for 3 or more tissues is available. We further selected exons with
a minimal variability (¢ > 0.005) and searched for significant associations performing Spearman
rank correlations. We limited the search of associations (psiQTLs) for common variants that are +/-
25 bp from splice donor or acceptor sites in the vicinity of the exon as these are expected to larger
functional impact with eventual PTV to allow direct comparison to rare variant analysis described
above (fig. S40). Associations of common genetic variants (~ 6.1M SNPs (imputed), MAF > 5%)
to exon PSI values were called psiQTLs. Encode regulatory regions were downloaded from Ensembl
and used to perform functional enrichment analysis.

S10 Online resources

PTV results are browseable using the GTEx portal www.gtexportal.org. Initially the search
entry will be through the Search Gene Expression bar by Gene ID or gene symbol. The
Protein Truncating Variant (PTV) data are displayed on the GTEx Gene page. The navigation menu
on the left side includes an entry “Protein Truncating Variants”.

For example visualizations please see http://kataviz.github.io/html/ase.html
and http://kataviz.github.io/html/ptv.html.

Improved predictive models for NMD are supported in the MAMBA software http://www.
well.ox.ac.uk/~rivas/mamba/ and will be updated with each data release.
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Figure S1: CNV quality control in the GTEx exome sequencing data set using XHMM. a) Coverage was cal-
culated and averaged over each target using GATKDepthOfCoverage. Mean sample coverage across the exome
ranged between 40x and 80x. b) Approximately 4000 targets were found to have little or no coverage in most
samples. c) Using XHMM, normalization was performed in a principal component analysis framework, where
the 7 largest principal components were automatically removed. d) The largest components were correlated
with a combination of GC content, and sample and target read depths.
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Figure S2: Validation of XHMM large deletion calls using array data. a) For each of the 399 deletion loci in our exome-based rare CNV map, we summarize the copy
number of each individual as the mean log, ratio of SuperArray probes in the locus. We then calculated the rank of those log, ratios, resulting in 184 ranks for each
locus. This histogram shows the distribution of ranks corresponding to all XHMM deletion calls. Individuals with XHMM calls tend to be low ranks at called sites
(lower rank = lower log, ratio). b) Here we show the relationship between SuperArray rank and log, ratio for all XHMM calls. We have colored all calls based on
whether or not they occur at known deletion loci previously described by the 1000 Genomes project or Structural Variation Consortium.
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Figure S3: Transcriptional properties of PTV containing transcripts: ubiquitous expression and splice junc-
tion usage. a) Proportion of ubiquitously expressed genes, defined as median gene expression level (calculated
across individuals) > 0.1 RPKM for all nine tissues in GTEX, in protein-coding genes where no PTVs, and
genes with PTVs of different frequency: common (MAF > .05), low frequency (.01 < MAF < .05), and c)
rare (MAF < .01). All three categories of PTV-containing genes were less likely to be ubiquitously expressed
compared to the set of protein-coding genes with no PTVs (P < 1.9 x 107!, two-proportion z-test). b) Maxi-
mum of the medians splice junction abundance across the nine tissues in junctions containing splice-disrupting
variants that are common, rare, and present in the Human Genome Mutation Database (HGMD) across the
nine tissues. The junction abundance is measured from individuals not carrying the variants. Junctions with
common splice-disrupting variants are less often used compared to those containing rare splice-disrupting vari-
ants (maximum SJ comparison P = 0.0015, MWW test) and reported disease-causing variants in HGMD (SJ
comparison P < 3.3 x 10712, MWW test).
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Figure S4: Transcriptional properties of PTV containing transcripts: tissue-wide expression profile for PTV containing genes. Comparison of the distribution of median
gene expression values for PTV containing genes across tissues and categories. We find evidence that genes containing common PTVs are consistently lower expressed
across tissues compared to genes that do not contain PTVs in these data sets (P value per tissue < 2 x 1076, MWW test) and the same is observed also for genes
containing low-frequency or rare PTVs (P value per tissue 6.1 x 1077 to 2.4 x 107! and < 2 x 10716, MWW test).



Ie

Q — No PTV O — No PTV
— —— Rare A — Rare
—— Common —— Common
Low frequency Low frequency

= Q| = Q|

53_3. o % o

(@) (@)

A\l A\

() ()

o © | o © |

n © 3 O

2 R%)

L] e

S o< S o<

S © S ©

T T

o o

o o

S o S o |

T S L o N
o o _ S—
o o

[ I I
3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3
log(RPKM) cutoff log(RPKM) cutoff

(a) Comparison to all protein-coding genes (b) Comparison to rare
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expressed than rare PTV containing genes.
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Figure S6: Transcriptional properties of PTV containing transcripts: assessment of tissue-specific expression for PTV containing genes. Comparison of the proportion
of genes above a tissue-specificity cutoff for rare (orange), common (blue), low frequency (aqua), and no PTV containing protein-coding genes (yellow). We find a)
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[filled circles denote two-proportion test P < .05]. b) Occasionally we observe significant differences in the tissue-specific expression comparison between common
and rare PTV containing genes (blue filled circles).
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Figure S8: Allele-specific expression: schematic diagram of the indel ASE pipeline. Our method is based on
alignment to local reference sequences that have been modified to contain both the reference and alternative
alleles. Briefly, for each variant we extract the flanking (&= 100bp) reference genomic sequence, and modify it
to build an alternative allele reference index. The RNA-seq reads are aligned to both of the indexes separately,
and final allele counts are retrieved from their combination.
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Figure S9: Allele-specific expression: RNA-seq based quality estimation of heterozygous indel genotypes called with GATK UnifiedGenotyper (UG; first row) or
GATK HaplotypeCaller (HC; second row). The histograms show the alternate allele ratio observed in RNA-seq data for genotypes called as heterozygous from exome-
sequencing data, in different variant classes of in-frame deletions, frameshift deletions, in-frame insertions, and frameshift insertions (columns left to right). The
expected allele ratio would be around 0.5 for true heterozygous genotypes, or slightly shifted to the left for frameshift variants due to NMD. Observing the poor quality

of especially deletion genotypes from GATK UnifiedGenotyper, we decided to use genotypes from GATK HaplotypeCaller for the indel analysis.
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Figure S11: Allele-specific expression: allelic ratios of all genotypes, with REF/REF in cyan, REF/ALT in purple, and ALT/ALT in red, for different variant classes
with the PTV classes (nonsense SNVs, frameshift insertions, frameshift deletions) shown on the right and the corresponding controls (synonymous SNVs, in-frame
insertions, in-frame deletions) on the left. Note that as the histograms include all measured genotypes, common variants become overrepresented and thus these results
capture genotype quality rather than an unbiased signal of NMD.
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Figure S12: Allele-specific expression: allelic ratios of heterozygous genotypes with the predicted protein-
truncating genetic variants (nonsense SNVs, frameshift insertions, frameshift deletions) shown on the right
and the corresponding controls (synonymous SNVs, in-frame insertions, in-frame deletions) on the left. In
order to capture an unbiased signal of NMD across variants, the data has been sampled to include only a single
heterozygote individual per variant, and the histograms show the median distribution of 500 rounds of sampling.
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Figure S13: mmPCR-seq validation experiment: comparison of the number of reads overlapping targeted sites for different aligners. For both TopHat and STAR, we
counted the number of reads that mapped to sites for which primers were designed. STAR mapped more reads to target sites across all samples.
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Figure S14: mmPCR-seq validation experiment: correlation of alternate allele ratios for different aligners. A.
Correlation of allelic ratios for STAR and TopHat without depth filtering for synonymous (green) and nonsense
variants (red). B. Correlation of allelic ratios after quality control filtering (total depth count > 150, ref allele
count > 5, and non-ref allele count > 5). Except for one variant (rs1138349) that was tested in 9 samples, there
is a high correlation of allelic ratios.
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Figure S15: In Figure S14 a cluster of points is observed at y = 0 and z = 0.5, which corresponds to
rs1138349. A possible explanation why STAR (bottom) fails to align one of the alleles is that the reads span
three exons and two splice sites. STAR did a good job mapping reads spanning two exons and one splice
junction. However, STAR failed to map reads that spanned all three exons and two splice junctions. Tophat
alignment is shown at the top.
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Figure S16: mmPCR-seq validation experiment: correlation of alternate allele ratios measured from RNA-seq and mmPCR-seq. Only heterozygous SNV sites with at
least 30 RNA-seq reads that passed mmPCR-seq quality control filtering (total depth count > 150, ref allele count > 5, and non-ref allele count > 5) were considered.
The Pearson correlation is significant for a) all variants, b) nonsense variants, and c¢) indel (P < 2.2 x 10716, P = 7.3 x 10714, and P = 4.4 x 1075).
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Figure S17: mmPCR-seq validation experiment: correlation of alternate allele ratio between technical repli-
cates for all SNVs. We compared the alternate allele ratios at heterozygous SNV sites with at least 150 reads
and at least five of each of the reference and alternate alleles using Pearson correlation. In each plot, sites are
colored according to the number of reads in the replicate with lower depth at that site. a) All replicates pooled (P
< 2.2 x 10716). b) The six inter-array replicates with greater than ten sites that passed the depth threshold (thy-
roid, thyroid, esophagus, breast, colon, stomach P = 0.008,0.009, 8.1 x 107, 6.3 x 107°, 0.006, respectively).
¢) The inter-array replicates (testis, blood vessel, pituitary, colon P = 5.2 x 1074,0.03, 1.1 x 1072,2.2 x 10716,
respectively). The plots in b) and c) are labeled by the tissue of origin of the sample. The two thyroid samples

come from different individuals.
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Figure S18: mmPCR-seq validation experiment: correlation of alternate allele ratio between technical repli-
cates for nonsense SN'Vs only. We compared the alternate allele ratios at heterozygous SNV sites with at least
150 reads and at least five of each of the reference and alternate alleles using Pearson correlation. In each plot,
sites are colored according to the number of reads in the replicate with lower depth at that site. The same repli-
cate samples as in Figure S17 are shown. A. All replicates pooled (P < 2.2 x 10~'6). B. Inter-array replicates
(thyroid, thyroid, esophagus, breast, colon, stomach P = 0.09, 0.38,2.8 x 1076, 7.4 x1074,0.002, 0.05, respec-
tively). C. The inter-array replicates (testis, blood vessel, pituitary, colon P = 3.8 x 1078,0.47,0.004, 5.2 x

10712

samples come from different individuals.
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Figure S19: Proportion of nonsense variants with allele-specific expression effects in the GTEx data set in
different frequency classes: common (MAF > 0.05; n = 84), rare (MAF < 0.01; n = 657), and singleton
(n = b532) variants. We observed significantly higher proportion of allelic imbalance in rare and singleton
nonsense variants (54.3%, 95% confidence interval (CI) 50.5% to 58.1%, and 55.4%, 95% CI 51.2 — 59.6%,
respectively) compared to common nonsense variants (35.7%, 95% CI 25.4 — 45.9%).

45



0.2 0.4 0.6

0.0

0.2 0.4 0.6

0.0

Proportion
04 06

0.2

0.0

0.2 0.4 0.6

0.0

0.4 0.6

0.2

0.0

Figure S20: When applying MCMC algorithms to a data set it is customary to show the performance of
the algorithm across all stages of the experiment (including the burn-in). We show that the GTM* algorithm
generates stable proportion estimates for all of the five states studied: NOASE (no ASE effects across all
tissues), MODASE (moderate ASE effects across all tissues), SNGASE (strong ASE across all tissues), HETO
(mixture of NOASE and/or MODASE, SNGASE) and HET1 (mixture of MODASE and SNGASE). For each
state we demonstrate the proportion estimate during the burn-in stage of the experiment (30 iterations, dashed
lines) and the state of the experiment used to obtain the global estimates (100 iterations, solid lines) reported in
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Figure S21: Insights into nonsense-mediated decay: modeling NMD with ASE outcome. When applying
machine learning algorithms to a test data set that is independent from the training data set it is common practice
to examine the prediction accuracy. To predict the outcome of the independent test data set (Geuvadis) we
used the predict.train function (caret package) using the option type = "prob" to compute class
probabilities. In this plot we show a histogram of the predicted probabilities of NMD assigned to nonsense
SNVs in the Geuvadis data set. We show that for those variants that have no ASE the model predicted for
22.8% of variants to have probability > .5 of having ASE signal indicative of NMD. Conversely, it predicted
for 77.2% of those variants to have probability < .5 of having ASE signal. Similarly, we show that for those
variants that have some ASE the model predicted for 68.8% of variants to have probability > .5 of having ASE
signal indicative of NMD. Conversely, it predicted for 31.2% of those variants that have some ASE to have

probability < .5 of having ASE signal. 47
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Figure S22: Insights into nonsense-mediated decay: feature (variable) importance plots for the random forest algorithm. For each feature in the training exercise the
feature importance plot tells the user how important that feature is in classifying the data. The top 30 features are represented on the graphs and an estimate of their
importance is given on the x-axis. In the training exercise we have an 80:20 percent split, i.e. treating 80% of the GTEx data set as the training set and 20% as the
test set (commonly referred to as the out of bag observations). a) By contrasting the out of bag predictions with the known outcomes, we arrive at an estimate of the
prediction error rate. For each feature, we compute the mean decrease in accuracy by comparing the prediction error rate to the case when the values of the feature are
permuted. b) A higher mean decrease in Gini means that the feature plays a greater role in partitioning the data into the defined classes (some ASE or no ASE). For a
description and a list of the 38 sequence and genomic features used see table S5.
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Figure S23: ASE classification examples: no ASE and moderate ASE across all tissues. The plots shown represent several properties of the data: (top) posterior
probabilities of the variant classification states across all tissues including NOASE (no ASE effects across all tissues), MODASE (moderate ASE effects across all
tissues), SNGASE (strong ASE effects across all tissues), HETO (heterogeneous effects with some tissues having no ASE and others some form of ASE), HET1
(heterogeneous effects with some tissues having moderate ASE effects others strong ASE effects), TIS_SPE (tissue specific effect); (center) shows the alternate allelic
ratio (maximum likelihood estimate and 95% confidence interval) per tissue; (bottom) INDIVIDUAL PROB representing the individual tissue posterior probability
of no ASE (white), moderate ASE (gray), or strong ASE (black). a) An example of a PTV, p.S88X (rs41296182) in the gene TRIM45 (tripartite motif containing 4),
classified as having no ASE effects across all studied tissues (posterior probability for the NOASE state = 0.99). b) An example of a PTV, p.Q59X (rs121908176) in
the gene BBS2 (Bardet-Biedl syndrome 2), classified as having moderate ASE effects across all studied tissues (posterior probability for the MODASE state = 0.99).
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(a) Strong ASE across all tissues (b) Mixture of moderate and strong ASE

Figure S24: ASE classification examples: strong ASE across all tissues and mixture of moderate and strong ASE. The plots shown represent several properties of the
data: (top) posterior probabilities of the variant classification states across all tissues including NOASE (no ASE effects across all tissues), MODASE (moderate ASE
effects across all tissues), SNGASE (strong ASE effects across all tissues), HETO (heterogeneous effects with some tissues having no ASE and others some form of
ASE), HET1 (heterogeneous effects with some tissues having moderate ASE effects others strong ASE effects), TIS_SPE (tissue specific effect); (center) shows the
alternate allelic ratio (maximum likelihood estimate and 95% confidence interval) per tissue; (bottom) INDIVIDUAL PROB representing the individual tissue posterior
probability of no ASE (white), moderate ASE (gray), or strong ASE (black). a) An example of a PTV, p.R388X (snp-2_.201476115) in the gene AOX!I (aldehyde
oxidase 1), classified as having strong ASE effects across all studied tissues (posterior probability for the SNGASE state = 0.98). b) An example of a PTV, p.E318X
(snp-6_86256830) in the gene SNX/4 (sorting nexin 14), classified as having a mixture of moderate and strong ASE effects (posterior probability for the HET1 state
= 0.87).
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(a) Mixture of no ASE and ASE (b) Tissue-specific ASE

Figure S25: ASE classification examples: mixture of no ASE and ASE effect and tissue-specific ASE. The plots shown represent several properties of the data: (top)
posterior probabilities of the variant classification states across all tissues including NOASE (no ASE effects across all tissues), MODASE (moderate ASE effects across
all tissues), SNGASE (strong ASE effects across all tissues), HETO (heterogeneous effects with some tissues having no ASE and others some form of ASE), HET1
(heterogeneous effects with some tissues having moderate ASE effects others strong ASE effects), TIS_SPE (tissue specific effect); (center) shows the alternate allelic
ratio (maximum likelihood estimate and 95% confidence interval) per tissue; (bottom) INDIVIDUAL PROB representing the individual tissue posterior probability
of no ASE (white), moderate ASE (gray), or strong ASE (black). a) An example of a PTV, p.Q776X (rs149244943) in the gene PHKB (phosphorylase kinase, beta),
classified as having a mixture of no ASE and ASE effects (posterior probability for the HETO state = 0.96). b) An example of a PTV, p.Q66X (snp_14_7817080) in the
gene ALKBH] (alkB, alkylation repair homolog 1), classified as having a tissue-specific ASE effect (posterior probability for the TIS_SPE state = 0.64).
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Figure S26: ASE data for p.S474X (rs328) in the gene LPL (lipoprotein lipase). The variant is classified as
having no ASE across all tissues (posterior probability for the NOASE state > 0.99) in the RNA-seq data set,
supporting the observation that transcripts with the mutation are retained. This is consistent with reports of a
truncated protein with a gain-of-function mutation and suggests that such proteins are likely present across all
tissues.
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Figure S27: Insights into dosage compensation: examining gene expression ratios measured by comparing the
gene expression value of the deleted gene(s) in PTV carriers to the median gene expression value of non-PTV
carriers. In a) and c¢) we show the histogram of the gene expression ratios in the Geuvadis data set before
(n = 27 large deletions) and after (n = 8 large deletions) PTV annotation and manual curation filtering,
respectively. In b) and d) we show a scatter plot of the median gene expression across all individuals (x-
axis) and the gene expression ratio (y-axis) before and after PTV annotation and manual curation filtering,
respectively.
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Figure S28: Insights into dosage compensation: examining gene expression ratios measured by comparing the
gene expression value of the deleted gene(s) in PTV carriers to the median gene expression value of non-PTV
carriers. In a) and c) we show the histogram of the gene expression ratios in the GTEx data set before (n = 65
large deletions) and after (n = 3 large deletions) PTV annotation and manual curation filtering, respectively.
In b) and d) we show a scatter plot of the median gene expression across all individuals (x-axis) and the gene
expression ratio (y-axis) before and after PTV annotation and manual curation filtering, respectively.
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Figure S29: Insights into dosage compensation: impact of somatic variants. a) In the GTEx exome sequencing data set we detected a large deletion event in a single
individual that spanned over 20 megabases (Mb). We show in red the sample Z-score of PCA normalized read depth for the sample containing the 20Mb event and in
gray for all other samples. b) Using data from an Omni 2.5M SNP array, we were able to confirm the presence of a large 20Mb somatic deletion. Across the predicted
deletion interval, there are essentially no B allele frequency (BAF) values corresponding to a typical heterozygous SNP (expected mean BAF = (0.5). Within this same
region, there is an increased density of points around BAF = 0.9 and BAF = 0.1, reflecting the fact that we have detected a mosaic deletion. Somatic mosaicism in blood
was inferred by the frequency of heterozygous genotypes and confirmed by the patterns of log, gene expression ratios (individual carrier gene expression value/median
non-PTV expression values, y-axis) across the 20Mb region in ¢) whole blood (mosaic deletion is present), d) lung (mosaic deletion is absent), €) subcutaneous adipose
(mosaic deletion is absent), and f) skeletal muscle (mosaic deletion is absent). When studying dosage compensation the patterns of no difference in gene expression
across all the genes in the 20Mb deletion in lung, adipose, and muscle could be mistaken as evidence of gene dosage compensation.
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Figure S30: Insights into dosage compensation: examining gene expression ratios measured by comparing the
gene expression value of the PTV carrier to the median gene expression value of non-PTV carriers. In a) and
¢) we show the histogram of the gene expression ratios in the GEUVADIS data set before (n = 116 nonsense
SNVs) and after (n = 35 nonsense SN'Vs) requiring at least one alternate read in the ASE data set, respectively.
In b) and d) we show a scatter plot of the median gene expression across all individuals (x-axis) and the gene
expression ratio (y-axis) before and after filtering, respectively.

56



Nonsense SNVs before requiring
median allelic ratio greater than 0.01 (GTEx)

RPKM = 0.1
M ---- RPKM =1
o [ ]
o0 _ | o t 4
2 ) o
©
% o e _ . ..- a o .. - ® (] ‘.
| 2 ¢ °T Tee " W ® €
ey g * s * ® .o
§ e 4 3 T v
=y "g o e ADPSBQ
i 5 9 e ARTTBL
) ° e HRTLV
> e LUNG
o ®
[ = MSCLSK
- e NERVET
i SKINS
THYROID
e WHLBLD
e - D:I D T T T T T T
L L ! ‘ 0.0 05 1.0 15 2.0 25 3.0
0 1 2 3 4 6 8
Gene Expression Ratio of PTV carriers Median Gene Expression Level (log10(RPKM))
to the median gene expression value for non-PTV carriers
. . . (b) Scatter plot of the median gene expression value
(a) Histogram of gene expression ratios . .
and gene expression ratio
Nonsense SNVs after requiring
median allelic ratio greater than 0.01 (GTEXx)
< RPKM = 0.1
= 7] B ---- RPKM =1
o [ ]
q
- — °
°
o g . . °
§ © o v ® .
(723
T o+ o e o 3 o °.o
§ 53 T v
& % . e ADPSBQ
£ o o s g e ARTTBL
o ° e HRTLV
< | S R ® LUNG
= MSCLSK
- e NERVET
«~ 4 i SKINS
THYROID
D D e WHLBLD
o = T T T T T T
L L ! ‘ 0.0 05 1.0 15 2.0 25 3.0
0 1 2 3 4 6 8
Gene Expression Ratio of PTV carriers Median Gene Expression Level (log10(RPKM))

to the median gene expression value for non-PTV carriers

(d) Scatter plot of the median gene expression value

(c) Histogram of gene expression ratios . .
and gene expression ratio

Figure S31: Insights into dosage compensation: examining gene expression ratios measured by comparing the
gene expression value of the PTV carrier to the median gene expression value of non-PTV carriers. In a) and ¢)
we show the histogram of the gene expression ratios in the GTEx data set before (n = 25 nonsense SNVs) and
after (n = 18 nonsense SNVs) requiring at least one alternate read in the ASE data set, respectively. In b) and
d) we show a scatter plot of the median gene expression across all individuals (x-axis) and the gene expression
ratio (y-axis) before and after filtering, respectively.
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Figure S32: When applying MCMC algorithms to a data set it is customary to show the performance of
the algorithm across all stages of the experiment (including the burn-in). We show a typical example of the
performance of the SDM algorithm that we use to obtain estimates of the proportion of variants belonging to
the group with evidence of splice disruption and estimates of the altrnative shift in the mean p. We generated
these for all distances across all the tissues studied. On the top row we show: A. the estimated proportion of
variants belonging to the null splice disruption group (0) across all 2000 iterations; B. the proportion of variants
belonging to the splice disruption group (1) across all 2000 iterations, and the mean proportion estimate (solid
line) and the 95% confidence interval (dashed line); C. the alternative shift in the mean y; and D. the variance
of the distribution. On the bottom row we show: E. a histogram of the splice quantification values, and the
estimated mixture densities; F. a histogram of the estimated proportion of variants belonging to the splice
disruption group (1); G. a histogram of the estimated alternative shift in the mean y; and H. a histogram of the
estimated variance.
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Figure S33: Transcriptional impact of variants proximal to splice junctions: rare variant analysis in Adipose Subcutaneous and Artery Tibial (GTEx data set). A.
Proportion of variants disrupting splicing at each distance + 1-25bp from donor and acceptor site, (x P < 0.05, % P < 0.01, *xx P < 0.001; green for P < 0.05; SDM
p-value evaluated on the estimated proportion of variants supporting the alternative distribution x the effect size of the alternative distribution). B. Classification of splice
disruption events: exon skipping (low exon quantification value, no impact on intron quantification), exon elongation (high intron quantification value, no impact on
exon quantification), and mixture (high intron and low exon quantification values). C. Effect size estimates (in standard deviations from the population distribution) of
the variants on splice junction quantification value. D. Median GERP of all variants and E. Number of common variants identified in an independent exome sequencing
study of 4,500 Swedish individuals. F. Number of variants in HGMD version hgmd-2012.4. G. Number of variants in ClinVar (Feb 2015 VCF release) (55).
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Figure S34: Transcriptional impact of variants proximal to splice junctions: rare variant analysis in Heart Left Ventricle and Lung (GTEx data set). A. Proportion of
variants disrupting splicing at each distance + 1-25bp from donor and acceptor site, (x* P < 0.05, *x P < 0.01, *x*x P < 0.001; green for P < 0.05; SDM p-value
evaluated on the estimated proportion of variants supporting the alternative distribution x the effect size of the alternative distribution). B. Classification of splice
disruption events: exon skipping (low exon quantification value, no impact on intron quantification), exon elongation (high intron quantification value, no impact on
exon quantification), and mixture (high intron and low exon quantification values). C. Effect size estimates (in standard deviations from the population distribution) of
the variants on splice junction quantification value. D. Median GERP of all variants and E. Number of common variants identified in an independent exome sequencing
study of 4,500 Swedish individuals. F. Number of variants in HGMD. G. Number of variants in ClinVar.
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Figure S35: Transcriptional impact of variants proximal to splice junctions: rare variant analysis in Muscle Skeletal and Nerve Tibial (GTEx data set). A. Proportion
of variants disrupting splicing at each distance £ 1-25bp from donor and acceptor site, (x P < 0.05, *x P < 0.01, xxx P < 0.001; green for P < 0.05; SDM p-value
evaluated on the estimated proportion of variants supporting the alternative distribution x the effect size of the alternative distribution). B. Classification of splice
disruption events: exon skipping (low exon quantification value, no impact on intron quantification), exon elongation (high intron quantification value, no impact on
exon quantification), and mixture (high intron and low exon quantification values). C. Effect size estimates (in standard deviations from the population distribution) of
the variants on splice junction quantification value. D. Median GERP of all variants and E. Number of common variants identified in an independent exome sequencing
study of 4,500 Swedish individuals. F. Number of variants in HGMD. G. Number of variants in ClinVar.
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Figure S36: Transcriptional impact of variants proximal to splice junctions: rare variant analysis in Skin Sun Exposed and Thyroid (GTEx data set). A. Proportion
of variants disrupting splicing at each distance £ 1-25bp from donor and acceptor site, (x P < 0.05, *x P < 0.01, xxx P < 0.001; green for P < 0.05; SDM p-value
evaluated on the estimated proportion of variants supporting the alternative distribution x the effect size of the alternative distribution). B. Classification of splice
disruption events: exon skipping (low exon quantification value, no impact on intron quantification), exon elongation (high intron quantification value, no impact on
exon quantification), and mixture (high intron and low exon quantification values). C. Effect size estimates (in standard deviations from the population distribution) of
the variants on splice junction quantification value. D. Median GERP of all variants and E. Number of common variants identified in an independent exome sequencing
study of 4,500 Swedish individuals. F. Number of variants in HGMD. G. Number of variants in ClinVar.
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Figure S37: Transcriptional impact of variants proximal to splice junctions: rare variant analysis in Blood (GTEx data set). A. Proportion of variants disrupting splicing
at each distance £ 1-25bp from donor and acceptor site, (x P < 0.05, #x P < 0.01, s*x P < 0.001; green for P < 0.05; SDM p-value evaluated on the estimated
proportion of variants supporting the alternative distribution x the effect size of the alternative distribution). B. Classification of splice disruption events: exon skipping
(low exon quantification value, no impact on intron quantification), exon elongation (high intron quantification value, no impact on exon quantification), and mixture
(high intron and low exon quantification values). C. Effect size estimates (in standard deviations from the population distribution) of the variants on splice junction
quantification value. D. Median GERP of all variants and E. Number of common variants identified in an independent exome sequencing study of 4,500 Swedish
individuals. F. Number of variants in HGMD. G. Number of variants in ClinVar.
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Figure S38: Transcriptional impact of variants proximal to splice junctions: example of a psiQTL variant
(rs7724759; —log,o(P value) = 39.07) for an exon in the gene CAST (calpastin). The x-axis represents the
169 individuals included in the analysis. The y-axis represents the exon inclusion level. In the green box plots
we show the exon inclusion levels of the tissues for which the individual is sampled; orange dots represent
the allelic dosages divided by two so that homozygous reference, heterozygous, and homozygous alternate is
approximately 0, 0.5, and 1, respectively. Homozygous individuals either fully exclude (boxplots on the left)
or fully include (box plots on the right) the exon, while heterozygous individuals have a partial exon inclusion.
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Enrichment of psiQTL variants across 14 functional categories
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Figure S39: Transcriptional impact of variants proximal to splice junctions: enrichment of common psiQTL
variants (for the top 3 associated variants detected in the GTEx data set) across 14 functional categories, cal-
culated as in Lappalainen et al. (5). The black line depicts the null of no enrichment. Enrichment of psiQTL
variants is observed in splice site regions (SPLICE_REGION_VARIANT).
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Figure S40: Transcriptional impact of variants proximal to splice junctions: positional patterns of common psiQTL variants. At FDR of 5% (P = 0.0104) we find
1779 psiQTLs in 169 tested individuals. We estimate that 1.2% of the exons of a given individual have inclusion levels directly affected by genetic variants which are
enriched in splice site regions. a) We show a plot of the density of the distance of variants (for the top associated variant) to the closest splice site with a peak observed
between 3 and 50 base pairs (bp). b) The bar plot shows the frequency of common variant psiQTLs proximal to the donor or acceptor junction (50bp window shown).
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Figure S41: Transcriptional impact of variants proximal to splice junctions: a splice disrupting variant, c.IVS8+1G>C (rs35337543), in the gene IFIHI (interferon
induced with helicase C domain 1). We show a) the splice disruption posterior probability across seven tissues after applying the splice disruption model (SDM)
to the GTEx data set and b) IGV snapshot of RNA-seq data from two tissues (subcutaneous adipose and lung) in the c.IVS8+1G>C carrier (top and bottom left).
The snapshots show splice disruption in approximately half the reads (light blue lines). We also show IGV snapshot of RNA-seq data from the same two tissues
(subcutaneous adipose and lung) in an individual that does not carry the c.IVS8+1G>C PTV variant.
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Figure S42: Transcriptional impact of variants proximal to splice junctions: a splice disrupting variant, rs116928232, in a non-canonical splice site, in the gene LIPA
(lipase A). We show a) the alternative shift in p (effect size) for the splice disruption group, and b) the posterior probability that the variant belongs to the splice
disruption group across ten tissues in the GTEx data set and Geuvadis data set (LCL). The variant rs116928232 is found in the HGMD data base and annotated as a
causal mutation for an autosomal recessive disorder Cholesteryl ester storage disease (CESD, OMIM:27800) associated with reducted activity and genetic defects of
lysosomal acid lipase. In (56), a compound heterozygote CESD patient is identified. The patient has a nonsense mutation in the paternal allele while the maternal allele

(b) splice disruption posterior probability

contains the A allele in rs116928232. Our data is consistent with the observation that the A allele in rs116928232 disrupts splicing in the patient.




PTYV Flags

Description

ANC_ALLELE
NON_CAN_EXON

PTYV is the ancestral allele

Exon is surrounded by non-canonical splice
site (i.e. not AG/GT)

END_TRUNC PTV removes less than 5% of remaining pro-
tein
SINGLE_EXON Transcript only has one coding exon

SMALL_INTRON Splice site variant within intron smaller than
15 bp

Splice site is non-canonical OR other splice
site within same intron is non-canonical
Unable to determine exon/intron boundaries

surrounding variant

NON_CAN_SPLICE

EXON_INTRON_UNDEF

Table S1: PTV annotation flags used in the annotation pipeline.

. GTEx Geuvadis
Variant
tvpe total avg.; homozygous total  avg.; homozygous
P (HC) (HC) (HC) (HC)
Honsense 1345 57.09; 11.56 5987 71.67; 12.57
(1020) (29.71, 4.75) (4682) (36.55; 3.81)
splice 845 58.64; 17.17 6113 125.28; 28.11
p (661) (29.12; 6.64) (3252) (29.39; 4.87)
frameshift 2324 107.19; 14.74 1023 16.94; 0.15
(1746) (68.10; 6.61) (606) (29.73; 0.31)
large deletions 70 (8) NA 59 (25) NA
total 4584 NA 13182 NA
(3435) (8565)

Table S2: Number of PTVs discovered in the GTEx exome sequencing data set and in the Geuvadis/1KG Phase
1 whole-genome data set. Total numbers of PTVs and average number of PTVs per individual ; average number
of homozygous PTVs per individual are shown for each PTV class and data set (in parenthesis data shown for
variants with HC flags only, i.e. those that do not have any of the filters described in table S1). For the Geuvadis
data set we report the numbers for the 421 individuals with genome sequence data. For large deletions we only
report the total number of PTV deletion with manual curation in the study.
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Stop-  Stop-  Frame- Frame- Synon. Synon. Synon.

gained gained  shift shift  Inframe in PTV TOTAL
e B o e wene  AF< 001 AF> 003

Initial set 151 79 259 119 143 94 50 50 945
Primers 102 57 162 78 94 55 40 44 632
designed
Added with 4 8 2 6 4 5 1 50
longer amp.
Final totals 122 61 170 80 100 59 45 45 632

Table S3: Summary of variant sites selected for mmPCR sequencing experiment in 121 RNA samples from 9 subjects. 682/945 (72%) passed primer design.



Read count Percentage of PTVs

8 100
15 71
20 57
40 31
60 20
100 9

Table S4: Read depth summary statistic for PTVs studied with ASE data. We compute the percentage of PTVs

with a total read count greater than or equal to a read count threshold. Eight is the minimum read count used to
include the ASE data in our analyses.
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No. | Predictor Description

1 X50bp 50bp rule

2 startdist distance to start codon

3 stopdist distance to stop codon

4 utr3distend distance to 3’-UTR end

5 utrSdiststart distance to 5’-UTR start

6 utr3diststart distance to 3’-UTR start

7 utrSdistend distance to 5’-UTR end

8 utr3size size of 3’-UTR

9 utr5size size of 5°-UTR

10 | trnscaffected Variant is annotated as a PTV in all (=FULL) or some (=PARTIAL) transcripts
11 | nexons number of exons

12 | ntrnsc number of alternative isoforms

13 | donordist distance to donor splice site

14 | acceptordist distance to acceptor splice site

15 | onecodingexon indicator variable representing whether the gene contains only one coding exon
16 | af allele frequency

17 | GC Percent GC in a window of +/- 75bp

18 | CpG Percent CpG in a window of +/- 75bp

19 | priPhCons Primate PhastCons conservation score (excl. humans)

20 | mamPhCons Mammalian PhastCons conservation score (excl. humans)
21 | verPhCons Vertebrate PhastCons conservation score (excl. humans)
22 | priPhyloP Primate PhyloP score (excl. humans)

23 | mamPhyloP Mammalian PhyloP (excl. humans)

24 | verPhyloP Vertebrate PhyloP (excl. humans)

25 | GerpN Neutral evolution score defined by GERP++

26 | GerpS Rejected Substitution score defined by GERP++

27 | EncExp Maximum ENCODE expression value

28 | EncH3K27Ac Maximum ENCODE H3K27 acetylation level

29 | EncH3K4Mel Maximum ENCODE H3K4 methylation level

30 | EncH3K4Me3 Maximum ENCODE H3K4 trimethylation level

31 | EncNucleo Maximum of ENCODE Nucleosome position track score
32 | minDistTSS Distance to closest Transcribed Sequence Start (TSS)

33 | minDistTSE Distance to closest Transcribed Sequence End (TSE)

34 | relcDNApos Relative position in transcript

35 | relCDSpos Relative position in coding sequence

36 | relProtPos Relative position in protein codon

37 | lofflag LOF flag proposed in MacArthur et al. 2012

38 | downstreamexons | Number of exons downstream of the PTV

Table S5: List of 38 predictors used for modeling NMD.
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Gene nptv | ntran | lde egene a d apval dpval | rpkm | nzero tissue
DDT 7 7 MERGED_DEL_2_105343 | ENSG00000099977.9 | 54.46 | -45.48 018 0.24 | 1803.07 | 126 LCL
FAM106A 1 1 MERGED _DEL 2 87821 | ENSG00000213077.5 8.00 | -3.37 | 452 x107° | 0.23 14.84 69 LCL
GSTT?2 2 2 MERGED _DEL_2 105343 | ENSG00000099984.6 1.42 | 0.88 0.0017 0.25 5.27 126 LCL
LGALS9C | 2 2 MERGED DEL 2 87821 | ENSG00000171916.11 | 24.29 | 1.85 0.0014 0.87 89.87 69 LCL
OR2TI10 1 1 MERGED _DEL 2 8411 ENSGO00000184022.2 | 3.10 | 2.34 0.13 0.33 12.22 16 LCL
UGT2BI17 | 1 1 CNVRI1953.1 ENSGO00000197888.2 | 0.47 | -0.014 0.0010 0.94 0.36 17 | WHLBLD
UGT2BI17 | 1 1 CNVRI1953.1 ENSG00000197888.2 | 0.70 | -0.18 | 8.17x107% | 0.38 0.66 14 LUNG

Table S6: Linear model results for each gene tested (a = additive effect estimate, d = dominance effect estimate, apval is the P value for the Wald test that a = 0,
dpval is the P value that d = 0). The addition of a dominance term to the linear model with the additive term never provided a better fit, thus there is no evidence
for dosage compensation for these genes in the tissues and donors examined. Gene - HGNC ID, nptv - number of transcripts from this gene annotated as PTV, ntran
- total number of transcripts from this gene present in GENCODE, type - “complete” (if nptv = ntran) otherwise partial (all deletions listed in this table are classified
as “complete”), lde - large deletion ID for the large deletion overlapping gene, egene - ENSEMBL genelD, RPKM - expression value of deletion carrier, nzero - the
number of individuals with copy number 0 at the locus.




Tissue psiQTLs | variants | exons*
Adipose (ADPSBQ) 417 399 315
Brain 257 253 207
Artery tibial (ARTTBL) 488 468 359
Heart (HRTLV) 351 336 265
Lung (LUNG) 484 464 363
Muscle skeletal (MSCLSK) 511 485 375
Nerve tibial (NERVET) 430 414 332
Skin sun exposed (SKINS) 466 448 352
Thyroid (THYROID) 463 444 351
Whole Blood (WHLBLD) 282 261 209
multiTissue 207 192 144

Table S7: Breakdown of common psiQTL results. xNon-overlapping exons.
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